

 django-afip

 v9.0.0

 	Instalación
	Uso
	Impresiones
	API	Core models
	PDF-related models
	Metadata models	Managers

	QuerySets
	Helpers

	Contribuciones
	Changelog

 django-afip

 	Docs »
	API
	

 Edit on GitHub

API¶

Core models¶

These are the code models which will normally be used for Receipt validation.

	
class django_afip.models.PointOfSales(*args, **kwargs)[source]¶
	Represents an existing AFIP point of sale.

Points of sales need to be created via AFIP’s web interface and it is
recommended that you use fetch_points_of_sales() to fetch
these programatically.

Note that deleting or altering these models will not affect upstream point
of sales.

This model also contains a few fields that are not required or sent to the
AFIP when validating receipt. They are used only for PDF generation.
Those fields are:

	issuing_name
	issuing_address
	issuing_email
	vat_condition
	gross_income_condition
	sales_terms

These fields may be ignored when using an external mechanism to generate
PDF or printable receipts.

	Parameters:		number (PositiveSmallIntegerField) – Number
	issuance_type (CharField) – Indicates if this POS emits using CAE and CAEA.
	blocked (BooleanField) – Blocked
	drop_date (DateField) – Drop date
	owner_id (ForeignKey to TaxPayer) – Owner
	issuing_name (CharField) – The name of the issuing entity as shown on receipts.
	issuing_address (TextField) – The address of the issuing entity as shown on receipts.
	issuing_email (CharField) – The email of the issuing entity as shown on receipts.
	vat_condition (CharField) – Vat condition
	gross_income_condition (CharField) – Gross income condition
	sales_terms (CharField) – The terms of the sale printed onto receipts by default (eg: single payment, checking account, etc).

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
class django_afip.models.Receipt(*args, **kwargs)[source]¶
	A receipt, as sent to AFIP.

Note that AFIP allows sending ranges of receipts, but this isn’t generally
what you want, so we model invoices individually.

You’ll probably want to relate some Sale or Order object from your
model with each Receipt.

All document_ fields contain the recipient’s data.

If the taxpayer has taxes or pays VAT, you need to attach Tax
and/or Vat instances to the Receipt.

	Parameters:		point_of_sales_id (ForeignKey to PointOfSales) – Point of sales
	receipt_type_id (ForeignKey to ReceiptType) – Receipt type
	concept_id (ForeignKey to ConceptType) – Concept
	document_type_id (ForeignKey to DocumentType) – The document type of the recipient of this receipt.
	document_number (BigIntegerField) – The document number of the recipient of this receipt.
	receipt_number (PositiveIntegerField) – If left blank, the next valid number will assigned when validating the receipt.
	issued_date (DateField) – Can diverge up to 5 days for good, or 10 days otherwise.
	total_amount (DecimalField) – Must be equal to the sum of net_taxed, exempt_amount, net_taxes, and all taxes and vats.
	net_untaxed (DecimalField) – The total amount to which taxes do not apply.For C-type receipts, this must be zero.
	net_taxed (DecimalField) – The total amount to which taxes apply.For C-type receipts, this is equal to the subtotal.
	exempt_amount (DecimalField) – Only for categories which are tax-exempt.For C-type receipts, this must be zero.
	service_start (DateField) – Date on which a service started. No applicable for goods.
	service_end (DateField) – Date on which a service ended. No applicable for goods.
	expiration_date (DateField) – Date on which this receipt expires. No applicable for goods.
	currency_id (ForeignKey to CurrencyType) – Currency in which this receipt is issued.
	currency_quote (DecimalField) – The currency’s quote on the day this receipt was issued.
	related_receipts (ManyToManyField) – Related receipts

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
formatted_number¶
	This receipt’s number in the usual format: 0001-00003087.

	
is_validated¶
	True if this instance is validated.

Note that resolving this property requires a DB query, so if you’ve a
very large amount of receipts you should prefetch (see django’s
select_related) the validation field. Even so, a DB query may
be triggered.

If you need a large list of validated receipts, you should actually
filter them via a QuerySet:

Receipt.objects.filter(validation__result==RESULT_APPROVED)

	
revalidate() → ReceiptValidation | None[source]¶
	Revalidate this receipt.

Fetches data of a validated receipt from AFIP’s servers.
If the receipt exists a ReceiptValidation instance is
created and returned, otherwise, returns None.
If there is already a ReceiptValidation for this instance,
returns self.validation.
This should be used for verification purpose, here’s a list of
some use cases:

	Incomplete validation process
	Fetch CAE data from AFIP’s servers

	
total_tax¶
	Returns the sum of all Tax objects.

	
total_vat¶
	Returns the sum of all Vat objects.

	
validate(ticket: AuthTicket = None, raise_=False) → list[str][source]¶
	Validates this receipt.

This is a shortcut to ReceiptQuerySet’s method of the same
name. Calling this validates only this instance.

	Parameters:		ticket (AuthTicket) – Use this ticket. If None, one will be loaded
or created automatically.
	raise (bool) – If True, an exception will be raised when
validation fails.

	
class django_afip.models.ReceiptValidation(*args, **kwargs)[source]¶
	The validation for a single Receipt.

This contains all validation-related data for a receipt, including its CAE
and the CAE expiration, unless validation has failed.

The observation field may contain any data returned by AFIP regarding
validation failure.

	Parameters:		result (CharField) – Indicates whether the validation was succesful or not.
	processed_date (DateTimeField) – Processed date
	cae (CharField) – The CAE as returned by the AFIP.
	cae_expiration (DateField) – The CAE expiration as returned by the AFIP.
	receipt_id (OneToOneField to Receipt) – The Receipt for which this validation applies.
	observations (ManyToManyField) – The observations as returned by the AFIP. These are generally present for failed validations.

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
class django_afip.models.Tax(*args, **kwargs)[source]¶
	A tax (type+amount) for a specific Receipt.

	Parameters:		tax_type_id (ForeignKey to TaxType) – Tax type
	description (CharField) – Description
	base_amount (DecimalField) – Base amount
	aliquot (DecimalField) – Aliquot
	amount (DecimalField) – Amount
	receipt_id (ForeignKey to Receipt) – Receipt

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
compute_amount() → int[source]¶
	Auto-assign and return the total amount for this tax.

	
class django_afip.models.TaxPayer(*args, **kwargs)[source]¶
	Represents an AFIP TaxPayer.

Note that multiple instances of this object can actually represent the same
taxpayer, each using a different key.

The following fields are only used for generating printables, and are never
sent to AFIP, hence, are entirely optional:

	logo

	Parameters:		name (CharField) – A friendly name to recognize this taxpayer.
	key (FileField) – Key
	certificate (FileField) – Certificate
	cuit (BigIntegerField) – Cuit
	is_sandboxed (BooleanField) – Indicates if this taxpayer should use with the sandbox servers rather than the production servers.
	certificate_expiration (DateTimeField) – Stores expiration for the current certificate.Note that this field is updated pre-save, so the value may be invalid for unsaved models.
	active_since (DateField) – Date since which this taxpayer has been legally active.
	logo (ImageField) – A logo to use when generating printable receipts.

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
certificate_object¶
	Returns the certificate as an OpenSSL object

Returns the certificate as an OpenSSL object (rather than as a file
object).

	
create_ticket(service: str) → django_afip.models.AuthTicket[source]¶
	Create an AuthTicket for a given service.

	
fetch_points_of_sales(ticket: AuthTicket = None) → list[PointOfSales][source]¶
	Fetch all point of sales objects.

Fetch all point of sales from the WS and store (or update) them
locally.

Returns a list of tuples with the format (pos, created,).

	
generate_csr(basename='djangoafip') → BinaryIO[source]¶
	Creates a CSR for this TaxPayer’s key

Creates a file-like object that contains the CSR which can be used to
request a new certificate from AFIP.

	
generate_key(force=False) → bool[source]¶
	Creates a key file for this TaxPayer

Creates a key file for this TaxPayer if it does not have one, and
immediately saves it.

A new key will not be generated if one is already set, unless the force
parameter is true. This is to prevent overwriting a potentially in-use key.

Returns True if and only if a key was created.

	
get_certificate_expiration() → datetime | None[source]¶
	Gets the certificate expiration from the certificate

Gets the certificate expiration from the certificate file. Note that
this value is stored into certificate_expiration when an instance
is saved, so you should generally prefer that method (since this one
requires reading and parsing the entire certificate).

	
get_or_create_ticket(service: str) → django_afip.models.AuthTicket[source]¶
	Return or create a new AuthTicket for a given serivce.

Return an existing ticket for a service if one is available, otherwise,
create a new one and return that.

This is generally the preferred method of obtaining tickets for any
service.

	
get_ticket(service: str) → AuthTicket | None[source]¶
	Return an existing AuthTicket for a given service, if any.

	
logo_as_data_uri¶
	This TaxPayer’s logo as a data uri.

	
class django_afip.models.Vat(*args, **kwargs)[source]¶
	A VAT (type+amount) for a specific Receipt.

	Parameters:		vat_type_id (ForeignKey to VatType) – Vat type
	base_amount (DecimalField) – Base amount
	amount (DecimalField) – Amount
	receipt_id (ForeignKey to Receipt) – Receipt

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

PDF-related models¶

These models are used only for PDF generation, or can be used for storing
additional non-validated metadata. You DO NOT need any of these classes
unless you intend to generate PDFs for receipts.

	
class django_afip.models.ReceiptEntry(*args, **kwargs)[source]¶
	An entry in a receipt.

Each ReceiptEntry represents a line in printable version of a Receipt. You
should generally have one instance per product or service.

Note that each entry has a Vat because a single Receipt can have
multiple products with different VatType.

	Parameters:		receipt_id (ForeignKey to Receipt) – Receipt
	description (CharField) – Description
	quantity (PositiveSmallIntegerField) – Quantity
	unit_price (DecimalField) – Price per unit before vat or taxes.
	vat_id (ForeignKey to VatType) – Vat

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
total_price¶
	The total price for this line (quantity * price).

	
class django_afip.models.ReceiptPDF(*args, **kwargs)[source]¶
	Printable version of a receipt.

Contains all print-related data of a receipt.

All issuing_* fields contain data for the entity issuing the Receipt
(these may change from one receipt to the next if, for example, the entity
moved).

The PDF file itself is saved into the pdf_file attribute, and is
generated when saving the model for the first time. If any attributes are
changed, you should manually call save_pdf() to
regenerate the PDF file.

PDF generation is skipped if the receipt has not been validated.

	Parameters:		receipt_id (OneToOneField to Receipt) – Receipt
	pdf_file (FileField) – The actual file which contains the PDF data.
	issuing_name (CharField) – Issuing name
	issuing_address (TextField) – Issuing address
	issuing_email (CharField) – Issuing email
	vat_condition (CharField) – Vat condition
	gross_income_condition (CharField) – Gross income condition
	client_name (CharField) – Client name
	client_address (TextField) – Client address
	client_vat_condition (CharField) – Client vat condition
	sales_terms (CharField) – Should be something like “Cash”, “Payable in 30 days”, etc.

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
save_pdf(save_model: bool = True) → None[source]¶
	Save the receipt as a PDF related to this model.

The related Receipt should be validated first, of course.
This model instance must have been saved prior to calling this method.

	Parameters:	save_model – If True, immediately save this model instance.

	
upload_to(filename='untitled', instance: Optional[django_afip.models.ReceiptPDF] = None) → str[source]¶
	Returns the full path for generated receipts.

These are bucketed inside nested directories, to avoid hundreds of
thousands of children in single directories (which can make reading
them excessively slow).

Metadata models¶

These models represent metadata like currency types or document types.

You should make sure you populate these tables either via the afipmetadata
command, or the load_metadata function:

	
django_afip.models.load_metadata() → None[source]¶
	Loads metadata from fixtures into the database.

	
class django_afip.models.ConceptType(*args, **kwargs)[source]¶
	An AFIP concept type.

See the AFIP’s documentation for details on each concept type.

	Parameters:		code (CharField) – Code
	description (CharField) – Description
	valid_from (DateField) – Valid from
	valid_to (DateField) – Valid until

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
class django_afip.models.CurrencyType(*args, **kwargs)[source]¶
	An AFIP curreny type.

See the AFIP’s documentation for details on each currency type.

	Parameters:		code (CharField) – Code
	description (CharField) – Description
	valid_from (DateField) – Valid from
	valid_to (DateField) – Valid until

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
class django_afip.models.DocumentType(*args, **kwargs)[source]¶
	An AFIP document type.

See the AFIP’s documentation for details on each document type.

	Parameters:		code (CharField) – Code
	description (CharField) – Description
	valid_from (DateField) – Valid from
	valid_to (DateField) – Valid until

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
class django_afip.models.Observation(*args, **kwargs)[source]¶
	An observation returned by AFIP.

AFIP seems to assign re-used codes to Observation, so we actually store
them as separate objects, and link to them from failed validations.

	Parameters:		code (PositiveSmallIntegerField) – Code
	message (CharField) – Message

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
class django_afip.models.ReceiptType(*args, **kwargs)[source]¶
	An AFIP receipt type.

See the AFIP’s documentation for details on each receipt type.

	Parameters:		code (CharField) – Code
	description (CharField) – Description
	valid_from (DateField) – Valid from
	valid_to (DateField) – Valid until

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
class django_afip.models.TaxType(*args, **kwargs)[source]¶
	An AFIP tax type.

See the AFIP’s documentation for details on each tax type.

	Parameters:		code (CharField) – Code
	description (CharField) – Description
	valid_from (DateField) – Valid from
	valid_to (DateField) – Valid until

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

	
class django_afip.models.VatType(*args, **kwargs)[source]¶
	An AFIP VAT type.

See the AFIP’s documentation for details on each VAT type.

	Parameters:		code (CharField) – Code
	description (CharField) – Description
	valid_from (DateField) – Valid from
	valid_to (DateField) – Valid until

	
exception DoesNotExist¶
	

	
exception MultipleObjectsReturned¶
	

Managers¶

Managers should be accessed via models. For example, ReceiptManager
should be accessed using Receipt.objects.

	
class django_afip.models.ReceiptManager[source]¶
	Default manager for the Receipt class.

You should generally access this using Receipt.objects.

	
fetch_last_receipt_number(point_of_sales: django_afip.models.PointOfSales, receipt_type: django_afip.models.ReceiptType) → int[source]¶
	Returns the number for the last validated receipt.

	
fetch_receipt_data(receipt_type: django_afip.models.ReceiptType, receipt_number: int, point_of_sales: django_afip.models.PointOfSales)[source]¶
	Returns receipt related data

	
get_queryset() → django_afip.models.ReceiptQuerySet[source]¶
	Return a new QuerySet object. Subclasses can override this method to
customize the behavior of the Manager.

	
class django_afip.models.ReceiptPDFManager[source]¶
		
create_for_receipt(receipt: django_afip.models.Receipt, **kwargs) → django_afip.models.ReceiptPDF[source]¶
	Creates a ReceiptPDF object for a given receipt.

Does not actually generate the related PDF file.

All attributes will be completed with the information for the relevant
PointOfSales instance.

	Parameters:	receipt (Receipt) – The receipt for the PDF which will be
generated.

QuerySets¶

QuerySets are generally accessed via their models. For example,
Receipt.objects.filter() will return a ReceiptQuerySet.

	
class django_afip.models.ReceiptQuerySet(model=None, query=None, using=None, hints=None)[source]¶
	The default queryset obtains when querying via ReceiptManager.

	
check_groupable() → django_afip.models.ReceiptQuerySet[source]¶
	Check that all receipts returned by this queryset are groupable.

“Groupable” means that they can be validated together: they have the
same POS and receipt type.

Returns the same queryset is all receipts are groupable, otherwise,
raises CannotValidateTogether.

	
validate(ticket: AuthTicket = None) → list[str][source]¶
	Validate all receipts matching this queryset.

Note that, due to how AFIP implements its numbering, this method is not
thread-safe, or even multiprocess-safe.

Because of this, it is possible that not all instances matching this
queryset are validated properly. Obviously, only successfully validated
receipts will be updated.

Returns a list of errors as returned from AFIP’s webservices. An
exception is not raised because partial failures are possible.

Receipts that succesfully validate will have a
ReceiptValidation object attatched to them with a validation
date and CAE information.

Already-validated receipts are ignored.

Attempting to validate an empty queryset will simply return an empty
list.

Helpers¶

	
django_afip.helpers.get_server_status(production: bool) → django_afip.helpers.ServerStatus[source]¶
	Return the status of AFIP’s WS servers

	Parameters:	production – Whether to check the production servers. If false, the
testing servers will be checked instead.

	
class django_afip.helpers.ServerStatus(app: bool, db: bool, auth: bool)[source]¶
	A dataclass holding the server’s reported status.

An instance is truthy if all services are okay, or evaluates to False
if at least one isn’t:

if not server_status:
 print("At least one service is down")
else
 print("All serivces are up")

	
app = None¶
	Whether the application server is working.

	
auth = None¶
	Whether the authentication server is working.

	
db = None¶
	Whether the database server is working.

 Next

 Previous

 © Copyright 2015-2020, Hugo Osvaldo Barrera

 Revision eae18c7e.

 Built with Sphinx using a theme provided by Read the Docs.

 Read the Docs
 v: v9.0.0

 	Versions
	latest
	stable
	v9.0.0
	v8.0.4
	v8.0.3
	v8.0.2
	v8.0.1
	v8.0.0
	v7.1.2
	v7.1.1
	v7.1.0
	v7.0.0
	v6.0.1
	v6.0.0
	v5.0.3
	v5.0.2
	v5.0.1
	v5.0.0
	v4.1.7
	v4.1.6
	v4.1.5
	v4.1.4
	v4.1.3
	v4.1.2
	v4.1.1
	v4.1.0
	v4.0.0
	v3.3.0
	v3.2.3
	v3.2.2
	v3.2.1
	v3.2.0
	v3.1.0
	v3.0.0
	v2.7.0
	v2.6.1
	v2.6.0
	v2.5.1
	v2.5.0
	v2.4.0
	v2.3.1
	v2.3.0
	v2.2.1
	v2.2.0
	v2.1.2
	v2.1.1
	v2.1.0
	v2.0.3
	v2.0.2
	v2.0.1
	v2.0.0

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

 Free document hosting provided by Read the Docs.

